direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23×Dic6, C6.1C25, C24.91D6, C12.64C24, Dic3.1C24, C3⋊1(Q8×C23), (C22×C6)⋊8Q8, C6⋊1(C22×Q8), C2.3(S3×C24), C4.61(S3×C23), (C23×C4).19S3, (C23×C12).14C2, (C2×C6).323C24, (C22×C4).466D6, (C2×C12).790C23, C22.51(S3×C23), C23.354(C22×S3), (C22×C6).430C23, (C23×C6).113C22, (C23×Dic3).11C2, (C22×C12).531C22, (C2×Dic3).295C23, (C22×Dic3).238C22, (C2×C6)⋊7(C2×Q8), (C2×C4).741(C22×S3), SmallGroup(192,1510)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1464 in 850 conjugacy classes, 543 normal (9 characteristic)
C1, C2, C2 [×14], C3, C4 [×8], C4 [×16], C22 [×35], C6, C6 [×14], C2×C4 [×28], C2×C4 [×56], Q8 [×64], C23 [×15], Dic3 [×16], C12 [×8], C2×C6 [×35], C22×C4 [×14], C22×C4 [×28], C2×Q8 [×112], C24, Dic6 [×64], C2×Dic3 [×56], C2×C12 [×28], C22×C6 [×15], C23×C4, C23×C4 [×2], C22×Q8 [×28], C2×Dic6 [×112], C22×Dic3 [×28], C22×C12 [×14], C23×C6, Q8×C23, C22×Dic6 [×28], C23×Dic3 [×2], C23×C12, C23×Dic6
Quotients:
C1, C2 [×31], C22 [×155], S3, Q8 [×8], C23 [×155], D6 [×15], C2×Q8 [×28], C24 [×31], Dic6 [×8], C22×S3 [×35], C22×Q8 [×14], C25, C2×Dic6 [×28], S3×C23 [×15], Q8×C23, C22×Dic6 [×14], S3×C24, C23×Dic6
Generators and relations
G = < a,b,c,d,e | a2=b2=c2=d12=1, e2=d6, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
(1 34)(2 35)(3 36)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 76)(14 77)(15 78)(16 79)(17 80)(18 81)(19 82)(20 83)(21 84)(22 73)(23 74)(24 75)(37 57)(38 58)(39 59)(40 60)(41 49)(42 50)(43 51)(44 52)(45 53)(46 54)(47 55)(48 56)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 85)(72 86)(97 173)(98 174)(99 175)(100 176)(101 177)(102 178)(103 179)(104 180)(105 169)(106 170)(107 171)(108 172)(109 155)(110 156)(111 145)(112 146)(113 147)(114 148)(115 149)(116 150)(117 151)(118 152)(119 153)(120 154)(121 139)(122 140)(123 141)(124 142)(125 143)(126 144)(127 133)(128 134)(129 135)(130 136)(131 137)(132 138)(157 181)(158 182)(159 183)(160 184)(161 185)(162 186)(163 187)(164 188)(165 189)(166 190)(167 191)(168 192)
(1 47)(2 48)(3 37)(4 38)(5 39)(6 40)(7 41)(8 42)(9 43)(10 44)(11 45)(12 46)(13 153)(14 154)(15 155)(16 156)(17 145)(18 146)(19 147)(20 148)(21 149)(22 150)(23 151)(24 152)(25 58)(26 59)(27 60)(28 49)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)(36 57)(61 121)(62 122)(63 123)(64 124)(65 125)(66 126)(67 127)(68 128)(69 129)(70 130)(71 131)(72 132)(73 116)(74 117)(75 118)(76 119)(77 120)(78 109)(79 110)(80 111)(81 112)(82 113)(83 114)(84 115)(85 137)(86 138)(87 139)(88 140)(89 141)(90 142)(91 143)(92 144)(93 133)(94 134)(95 135)(96 136)(97 190)(98 191)(99 192)(100 181)(101 182)(102 183)(103 184)(104 185)(105 186)(106 187)(107 188)(108 189)(157 176)(158 177)(159 178)(160 179)(161 180)(162 169)(163 170)(164 171)(165 172)(166 173)(167 174)(168 175)
(1 87)(2 88)(3 89)(4 90)(5 91)(6 92)(7 93)(8 94)(9 95)(10 96)(11 85)(12 86)(13 159)(14 160)(15 161)(16 162)(17 163)(18 164)(19 165)(20 166)(21 167)(22 168)(23 157)(24 158)(25 64)(26 65)(27 66)(28 67)(29 68)(30 69)(31 70)(32 71)(33 72)(34 61)(35 62)(36 63)(37 141)(38 142)(39 143)(40 144)(41 133)(42 134)(43 135)(44 136)(45 137)(46 138)(47 139)(48 140)(49 127)(50 128)(51 129)(52 130)(53 131)(54 132)(55 121)(56 122)(57 123)(58 124)(59 125)(60 126)(73 192)(74 181)(75 182)(76 183)(77 184)(78 185)(79 186)(80 187)(81 188)(82 189)(83 190)(84 191)(97 114)(98 115)(99 116)(100 117)(101 118)(102 119)(103 120)(104 109)(105 110)(106 111)(107 112)(108 113)(145 170)(146 171)(147 172)(148 173)(149 174)(150 175)(151 176)(152 177)(153 178)(154 179)(155 180)(156 169)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)
(1 151 7 145)(2 150 8 156)(3 149 9 155)(4 148 10 154)(5 147 11 153)(6 146 12 152)(13 39 19 45)(14 38 20 44)(15 37 21 43)(16 48 22 42)(17 47 23 41)(18 46 24 40)(25 114 31 120)(26 113 32 119)(27 112 33 118)(28 111 34 117)(29 110 35 116)(30 109 36 115)(49 80 55 74)(50 79 56 73)(51 78 57 84)(52 77 58 83)(53 76 59 82)(54 75 60 81)(61 100 67 106)(62 99 68 105)(63 98 69 104)(64 97 70 103)(65 108 71 102)(66 107 72 101)(85 178 91 172)(86 177 92 171)(87 176 93 170)(88 175 94 169)(89 174 95 180)(90 173 96 179)(121 181 127 187)(122 192 128 186)(123 191 129 185)(124 190 130 184)(125 189 131 183)(126 188 132 182)(133 163 139 157)(134 162 140 168)(135 161 141 167)(136 160 142 166)(137 159 143 165)(138 158 144 164)
G:=sub<Sym(192)| (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,73)(23,74)(24,75)(37,57)(38,58)(39,59)(40,60)(41,49)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,85)(72,86)(97,173)(98,174)(99,175)(100,176)(101,177)(102,178)(103,179)(104,180)(105,169)(106,170)(107,171)(108,172)(109,155)(110,156)(111,145)(112,146)(113,147)(114,148)(115,149)(116,150)(117,151)(118,152)(119,153)(120,154)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144)(127,133)(128,134)(129,135)(130,136)(131,137)(132,138)(157,181)(158,182)(159,183)(160,184)(161,185)(162,186)(163,187)(164,188)(165,189)(166,190)(167,191)(168,192), (1,47)(2,48)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,153)(14,154)(15,155)(16,156)(17,145)(18,146)(19,147)(20,148)(21,149)(22,150)(23,151)(24,152)(25,58)(26,59)(27,60)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,127)(68,128)(69,129)(70,130)(71,131)(72,132)(73,116)(74,117)(75,118)(76,119)(77,120)(78,109)(79,110)(80,111)(81,112)(82,113)(83,114)(84,115)(85,137)(86,138)(87,139)(88,140)(89,141)(90,142)(91,143)(92,144)(93,133)(94,134)(95,135)(96,136)(97,190)(98,191)(99,192)(100,181)(101,182)(102,183)(103,184)(104,185)(105,186)(106,187)(107,188)(108,189)(157,176)(158,177)(159,178)(160,179)(161,180)(162,169)(163,170)(164,171)(165,172)(166,173)(167,174)(168,175), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,85)(12,86)(13,159)(14,160)(15,161)(16,162)(17,163)(18,164)(19,165)(20,166)(21,167)(22,168)(23,157)(24,158)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,61)(35,62)(36,63)(37,141)(38,142)(39,143)(40,144)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,127)(50,128)(51,129)(52,130)(53,131)(54,132)(55,121)(56,122)(57,123)(58,124)(59,125)(60,126)(73,192)(74,181)(75,182)(76,183)(77,184)(78,185)(79,186)(80,187)(81,188)(82,189)(83,190)(84,191)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119)(103,120)(104,109)(105,110)(106,111)(107,112)(108,113)(145,170)(146,171)(147,172)(148,173)(149,174)(150,175)(151,176)(152,177)(153,178)(154,179)(155,180)(156,169), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,151,7,145)(2,150,8,156)(3,149,9,155)(4,148,10,154)(5,147,11,153)(6,146,12,152)(13,39,19,45)(14,38,20,44)(15,37,21,43)(16,48,22,42)(17,47,23,41)(18,46,24,40)(25,114,31,120)(26,113,32,119)(27,112,33,118)(28,111,34,117)(29,110,35,116)(30,109,36,115)(49,80,55,74)(50,79,56,73)(51,78,57,84)(52,77,58,83)(53,76,59,82)(54,75,60,81)(61,100,67,106)(62,99,68,105)(63,98,69,104)(64,97,70,103)(65,108,71,102)(66,107,72,101)(85,178,91,172)(86,177,92,171)(87,176,93,170)(88,175,94,169)(89,174,95,180)(90,173,96,179)(121,181,127,187)(122,192,128,186)(123,191,129,185)(124,190,130,184)(125,189,131,183)(126,188,132,182)(133,163,139,157)(134,162,140,168)(135,161,141,167)(136,160,142,166)(137,159,143,165)(138,158,144,164)>;
G:=Group( (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,82)(20,83)(21,84)(22,73)(23,74)(24,75)(37,57)(38,58)(39,59)(40,60)(41,49)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,85)(72,86)(97,173)(98,174)(99,175)(100,176)(101,177)(102,178)(103,179)(104,180)(105,169)(106,170)(107,171)(108,172)(109,155)(110,156)(111,145)(112,146)(113,147)(114,148)(115,149)(116,150)(117,151)(118,152)(119,153)(120,154)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144)(127,133)(128,134)(129,135)(130,136)(131,137)(132,138)(157,181)(158,182)(159,183)(160,184)(161,185)(162,186)(163,187)(164,188)(165,189)(166,190)(167,191)(168,192), (1,47)(2,48)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,153)(14,154)(15,155)(16,156)(17,145)(18,146)(19,147)(20,148)(21,149)(22,150)(23,151)(24,152)(25,58)(26,59)(27,60)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,127)(68,128)(69,129)(70,130)(71,131)(72,132)(73,116)(74,117)(75,118)(76,119)(77,120)(78,109)(79,110)(80,111)(81,112)(82,113)(83,114)(84,115)(85,137)(86,138)(87,139)(88,140)(89,141)(90,142)(91,143)(92,144)(93,133)(94,134)(95,135)(96,136)(97,190)(98,191)(99,192)(100,181)(101,182)(102,183)(103,184)(104,185)(105,186)(106,187)(107,188)(108,189)(157,176)(158,177)(159,178)(160,179)(161,180)(162,169)(163,170)(164,171)(165,172)(166,173)(167,174)(168,175), (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,85)(12,86)(13,159)(14,160)(15,161)(16,162)(17,163)(18,164)(19,165)(20,166)(21,167)(22,168)(23,157)(24,158)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,61)(35,62)(36,63)(37,141)(38,142)(39,143)(40,144)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,127)(50,128)(51,129)(52,130)(53,131)(54,132)(55,121)(56,122)(57,123)(58,124)(59,125)(60,126)(73,192)(74,181)(75,182)(76,183)(77,184)(78,185)(79,186)(80,187)(81,188)(82,189)(83,190)(84,191)(97,114)(98,115)(99,116)(100,117)(101,118)(102,119)(103,120)(104,109)(105,110)(106,111)(107,112)(108,113)(145,170)(146,171)(147,172)(148,173)(149,174)(150,175)(151,176)(152,177)(153,178)(154,179)(155,180)(156,169), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,151,7,145)(2,150,8,156)(3,149,9,155)(4,148,10,154)(5,147,11,153)(6,146,12,152)(13,39,19,45)(14,38,20,44)(15,37,21,43)(16,48,22,42)(17,47,23,41)(18,46,24,40)(25,114,31,120)(26,113,32,119)(27,112,33,118)(28,111,34,117)(29,110,35,116)(30,109,36,115)(49,80,55,74)(50,79,56,73)(51,78,57,84)(52,77,58,83)(53,76,59,82)(54,75,60,81)(61,100,67,106)(62,99,68,105)(63,98,69,104)(64,97,70,103)(65,108,71,102)(66,107,72,101)(85,178,91,172)(86,177,92,171)(87,176,93,170)(88,175,94,169)(89,174,95,180)(90,173,96,179)(121,181,127,187)(122,192,128,186)(123,191,129,185)(124,190,130,184)(125,189,131,183)(126,188,132,182)(133,163,139,157)(134,162,140,168)(135,161,141,167)(136,160,142,166)(137,159,143,165)(138,158,144,164) );
G=PermutationGroup([(1,34),(2,35),(3,36),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,76),(14,77),(15,78),(16,79),(17,80),(18,81),(19,82),(20,83),(21,84),(22,73),(23,74),(24,75),(37,57),(38,58),(39,59),(40,60),(41,49),(42,50),(43,51),(44,52),(45,53),(46,54),(47,55),(48,56),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,85),(72,86),(97,173),(98,174),(99,175),(100,176),(101,177),(102,178),(103,179),(104,180),(105,169),(106,170),(107,171),(108,172),(109,155),(110,156),(111,145),(112,146),(113,147),(114,148),(115,149),(116,150),(117,151),(118,152),(119,153),(120,154),(121,139),(122,140),(123,141),(124,142),(125,143),(126,144),(127,133),(128,134),(129,135),(130,136),(131,137),(132,138),(157,181),(158,182),(159,183),(160,184),(161,185),(162,186),(163,187),(164,188),(165,189),(166,190),(167,191),(168,192)], [(1,47),(2,48),(3,37),(4,38),(5,39),(6,40),(7,41),(8,42),(9,43),(10,44),(11,45),(12,46),(13,153),(14,154),(15,155),(16,156),(17,145),(18,146),(19,147),(20,148),(21,149),(22,150),(23,151),(24,152),(25,58),(26,59),(27,60),(28,49),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56),(36,57),(61,121),(62,122),(63,123),(64,124),(65,125),(66,126),(67,127),(68,128),(69,129),(70,130),(71,131),(72,132),(73,116),(74,117),(75,118),(76,119),(77,120),(78,109),(79,110),(80,111),(81,112),(82,113),(83,114),(84,115),(85,137),(86,138),(87,139),(88,140),(89,141),(90,142),(91,143),(92,144),(93,133),(94,134),(95,135),(96,136),(97,190),(98,191),(99,192),(100,181),(101,182),(102,183),(103,184),(104,185),(105,186),(106,187),(107,188),(108,189),(157,176),(158,177),(159,178),(160,179),(161,180),(162,169),(163,170),(164,171),(165,172),(166,173),(167,174),(168,175)], [(1,87),(2,88),(3,89),(4,90),(5,91),(6,92),(7,93),(8,94),(9,95),(10,96),(11,85),(12,86),(13,159),(14,160),(15,161),(16,162),(17,163),(18,164),(19,165),(20,166),(21,167),(22,168),(23,157),(24,158),(25,64),(26,65),(27,66),(28,67),(29,68),(30,69),(31,70),(32,71),(33,72),(34,61),(35,62),(36,63),(37,141),(38,142),(39,143),(40,144),(41,133),(42,134),(43,135),(44,136),(45,137),(46,138),(47,139),(48,140),(49,127),(50,128),(51,129),(52,130),(53,131),(54,132),(55,121),(56,122),(57,123),(58,124),(59,125),(60,126),(73,192),(74,181),(75,182),(76,183),(77,184),(78,185),(79,186),(80,187),(81,188),(82,189),(83,190),(84,191),(97,114),(98,115),(99,116),(100,117),(101,118),(102,119),(103,120),(104,109),(105,110),(106,111),(107,112),(108,113),(145,170),(146,171),(147,172),(148,173),(149,174),(150,175),(151,176),(152,177),(153,178),(154,179),(155,180),(156,169)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192)], [(1,151,7,145),(2,150,8,156),(3,149,9,155),(4,148,10,154),(5,147,11,153),(6,146,12,152),(13,39,19,45),(14,38,20,44),(15,37,21,43),(16,48,22,42),(17,47,23,41),(18,46,24,40),(25,114,31,120),(26,113,32,119),(27,112,33,118),(28,111,34,117),(29,110,35,116),(30,109,36,115),(49,80,55,74),(50,79,56,73),(51,78,57,84),(52,77,58,83),(53,76,59,82),(54,75,60,81),(61,100,67,106),(62,99,68,105),(63,98,69,104),(64,97,70,103),(65,108,71,102),(66,107,72,101),(85,178,91,172),(86,177,92,171),(87,176,93,170),(88,175,94,169),(89,174,95,180),(90,173,96,179),(121,181,127,187),(122,192,128,186),(123,191,129,185),(124,190,130,184),(125,189,131,183),(126,188,132,182),(133,163,139,157),(134,162,140,168),(135,161,141,167),(136,160,142,166),(137,159,143,165),(138,158,144,164)])
Matrix representation ►G ⊆ GL5(𝔽13)
12 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 | 7 |
12 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 5 | 3 |
0 | 0 | 0 | 0 | 8 |
G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,2,4,0,0,0,0,7],[12,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,5,0,0,0,0,3,8] >;
72 conjugacy classes
class | 1 | 2A | ··· | 2O | 3 | 4A | ··· | 4H | 4I | ··· | 4X | 6A | ··· | 6O | 12A | ··· | 12P |
order | 1 | 2 | ··· | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 2 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | ··· | 2 | 2 | ··· | 2 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | - | + | + | - |
image | C1 | C2 | C2 | C2 | S3 | Q8 | D6 | D6 | Dic6 |
kernel | C23×Dic6 | C22×Dic6 | C23×Dic3 | C23×C12 | C23×C4 | C22×C6 | C22×C4 | C24 | C23 |
# reps | 1 | 28 | 2 | 1 | 1 | 8 | 14 | 1 | 16 |
In GAP, Magma, Sage, TeX
C_2^3\times Dic_6
% in TeX
G:=Group("C2^3xDic6");
// GroupNames label
G:=SmallGroup(192,1510);
// by ID
G=gap.SmallGroup(192,1510);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,1684,102,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^12=1,e^2=d^6,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations